Reconstituting and Evolving Robot Movements by PCA on Captured Human Motions

Syungkwon Ra, ChangHwan Kim, Sang-Rok Oh Korea Institute of Science and Technology, Korea

> Paolo Dario Scuola Superiore Sant'Anna, Italy

> > **† PCA : Principal Component Analysis**

Introduction

- Can robots imitate the natural motions of human?
 - By means of motion capture system
- Robot movement lies on high-dimensional space
 - Dimension Reduction by principal component analysis (PCA)
- Evidence of optimization (usually w.r.t. a physical criterion, e.g., metabolic energy) taking place with movement learning.
 - Optimization minimizing total torque
- Transition from "closed-loop" to "open-loop" control as learning takes place.
 - Evolving robot movements

Related Works

- Neuroscience
 - [Raibert, Horn 1978] [Hollerbach, Flash 1982]
 - : Brain carry out inverse dynamics-based optimization
 - : Look-up table for motions

PCA

- [Fod, Mataric, Jenkins 2002] : Movement classification
- [Tatani, Nakamura 2003] : Dimensionality reduction
- [Lim, Ra, Park 2005] : Recombination of principal components

Evolutionary Robotics

- [Zykov, Bongard, Lipson 2004] : Evolving dynamic gaits
- [Aydemir, Iba 2006] : Behavior Acquisition

Two Practical Issues

- Captured Human Motions
 - Kinematic information
 - Accumulated experience of a human being
 - Dynamically consistent and optimized
- ISSUE 1 : How to utilize a limited number of captured human motions for a robot?
 - We cannot store all human motions that a robot is in need of
- ISSUE 2 : Are human motions also optimal to a robot?
 - Their dynamic properties are different

Our Approaches

- Movement primitives are represented as joint trajectories
- Statistical analysis and reconstitution
 - The basis functions are obtained from Principal Component Analysis of motion data
 - Robot motions are reconstituted by linear combination of the basis functions.
- Evolving human motions to robot motions
 - Evolutionary computation
 - PCA-based genetic operator

Issue 1

- How to utilize a limited number of captured human motions for a robot?
 - We cannot store all human motions that a robot is in need of

PCA : PRINCIPAL COMPONENT ANALYSIS

- Given vector time series data $\{x[0], x[1], \dots, x[N]\}$, each $x[i] \in \Re^p$ is a sample of the random vector $x \in \Re^p$.
- Sample mean : $\overline{x} = \frac{1}{N+1} \sum_{i=0}^{N} x[i] \in \Re^{p}$
- Sample covariance : $S = \frac{1}{N} \sum_{i=0}^{N} (x[i] \overline{x}) (x[i] \overline{x})^{T} \in \Re^{p \times p}$
- Let eigenvector pairs for *S*, where $e_i^T e_j = \delta_{ij}$ (Kronecker delta) $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p > 0$
- The eigenvectors $\{e_1, e_2, \cdots, e_p\}$ are the principal components.

PCA on Captured Human Motions

restored samples

/ Linear Combination

differences

PCA↓

selected 4 P.Cs

ĺ	P.C.	RATIO	-	
	1	74.36 %		
	2	23.50 %		
	3	1.65 %		
	4	0.28 %		
	Sum	99.79 %		
elated contribution				

restored samples are represented as

 $\overline{q}(t)$: sample mean

=

- $p_i(t)$: i-th principal component
 - λ_i : i-th eigenvalue

Overall Procedure

relbow_z PCs 0.2 F 1st PC
 2nd PC
 3rd PC
 4th PC 0.15 0.1 0.05 PCA -0.05 -0.1 -0.15 -0.2 L 1.5 0.5 Inverse Motion Reconstitution f. **Kinematics** Motion condition

Motion Reconstitution via Kinematic Interpolation

Linear combination of 3 dominant principal components

(t):robjætintetrajry (t):meanctæjye p(t):i-thprinæipalp x:scalaghtei

Motion condition

Motion Reconstitution via Dynamics-based Optimization

Linear combination of 4 dominant principal components

Motion condition

Dynamics-based Optimization : minimum torque

subject to the dynamic equation of motion

• Optimization Variables are scalar weight x_i

Comparison : Optimization using B-spline

Parameterize joint trajectories using B-spline

- Optimization variables are control points.
- We benchmark the optimization results obtained using the PCA basis functions with those obtained by parameterizing joint trajectories using general B-splines

Case Study (I)

- Arm model
 - 3R(shoulder)-1R(elbow) structure
- Motion task
 - Raising and Reaching of hand
- Motion capture data
 - 50 trials of various hand lifting motions by subject.

Kinematic Interpolation

 Motions clearly resemble human motions, but may not necessarily be the most efficient from an energy consumption perspective.

Dynamics-based Optimization

- The motions generated from B-splines appear less natural than those obtained from PCA-based primitives.
- Since the principal components are extracted from human arm movement data, it is entirely reasonable to expect that such motions will resemble human arm motions.

Comparison : PCA vs. B-spline

B-spline

Number of optimization variables	12 (3x4dof)	16 (4x4dof)	20 (5x4dof)	24 (6x4dof)
Number of control points	7x4dof	8x4dof	9x4dof	10x4dof
Number of iterations	17	24	40	38
Objective function value	321.5	287.8	273.2	244.3
Computation time (sec.)	227.0	397.0	795.4	905.9

PCA

Number of optimization variables	12 (3x4dof)	16 (4x4dof)	20 (5x4dof)	24 (6x4dof)
Number of principal components	2x4dof	3x4dof	4x4dof	5x4dof
Number of iterations	8	21	43	59
Objective function value	428.6	248.1	229.5	212.1
Computation time (sec.)	25.1	78.9	195.6	328.3

† MATLAB on Pentium 4 PC

Issue 2

- Are human motions also optimal to a robot?
 - Their dynamic properties are different

Evolving Movement Primitives

- AIM : "Refashion human motion patterns into trained ones for a specific robot"
- Each movement primitive m_i has its own condition c_i
- Assumption
 - Similar conditions, Similar movements
 - One optimal primitives can contribute to making neighborhood primitives be optimal
- Individuals
 - Movement primitives
- Genotype
 - Joint trajectories
- Fitness Function
 - Required torque $\frac{1}{2}$

PCA-based Genetic Operator

- Recombination operator
- Similarity
 - Distance metric

- PCA
- Motion Reconstitution via dynamics-based optimization
- Repeating from (m₁,c₁) to (m_n, c_n)

Why Evolutionary Computation (EC)?

- AIM : Refashion human motion patterns into trained ones for a specific robot
- 1) EC falls in the category of generate-and-test algorithms
 → Repeated trials while human learns a new sport or skill
- 2) EC uses not a one solution candidate but a whole collection simultaneously
 - \rightarrow A set of movement primitives = collection of candidate solution
- 3) EC provides approximated solutions for high non-linearity problem
- 4) EC as global optimizer and genetic operator as local optimizer

Case Study (II) : Catching a ball

- KIST humanoid robot 'MAHRU'
- Waist-arm model
 - 1R(waist)-3R(shoulder)-1R(elbow)-2R(wrist) structure

Case Study (II) : Catching a ball

- Primitive motion
 - Catching a ball
- Motion capture data
 - 140 trials of various catching points by subject

Standing (left), catching (center, right)

Catching points (blue dot)

Distance metric

(*RA*):rotatioplosit atatchinga vyw:scalaghtei

Three Methods

- Human movement primitives
 - kinematic interpolation
 - dynamics-based optimization
- Evolved Movement Primitives
 - kinematic interpolation

- \rightarrow METHOD 1
- \rightarrow METHOD 2

 \rightarrow METHOD 3

Evolution Result

the number of updated individuals

average of fitness function value

Kinematic Interpolation on Human movement (method 1) v.s Kinematic Interpolation on Evolved movement (method 3)

	Method 1	Method 3
Motion Generation Time	0.092 sec	0.101 sec
Torque-Consumption	370.0	275.3

† C++ on Pentium 4 PC

Dynamics-based Optimization on Human movement (method 2) v.s Kinematic Interpolation on Evolved movement (method 3)

	Method 2	Method 3
Motion Generation Time	11.32 sec	0.127 sec
Torque-Consumption	348.7	385.1

† C++ on Pentium 4 PC

Method 1 vs. 2 vs. 3

- Generate arbitrary 10 catching motions
- Compare the average performances

	Method 1	Method 2	Method 3
Motion Generation Time	0.109 sec	13.21 sec	0.115 sec
Torque-Consumption	498.7	372.6	428.4

† C++ on Pentium 4 PC

Result

- Evolved movement primitives are sufficiently optimal
- Generating motions from evolved movement primitives has light computational burden

Conclusion

- A framework for representing movement primitives based on PCA of motion data.
- Efficient storage, near real-time generation of optimal motions that resemble motion data.
- inverse dynamics-based optimization during repeated practices and storage and retrieval of a great variety of optimal movement patterns.
- Ongoing work : more sophisticated and full-body motions